
Static Stack-Preserving Intra-Procedural Slicing of WebAssembly
Binaries

Quentin Stiévenart

Vrije Universiteit Brussel

Brussels, Belgium

quentin.stievenart@vub.be

David W. Binkley

Loyola University Maryland

Baltimore, MD, USA

binkley@cs.loyola.edu

Coen De Roover

Vrije Universiteit Brussel

Brussels, Belgium

coen.de.roover@vub.be

ABSTRACT
The recently introducedWebAssembly standard aims to be a portable

compilation target, enabling the cross-platform distribution of pro-

grams written in a variety of languages. We propose an approach

to slice WebAssembly programs in order to enable applications

in reverse engineering, code comprehension, and security among

others. Given a program and a location in that program, program

slicing produces a minimal version of the program that preserves

the behavior at the given location. Specifically, our approach is

a static, intra-procedural, backward slicing approach that takes

into account WebAssembly-specific dependences to identify the

instructions of the slice. To do so it must correctly overcome the

considerable challenges of performing dependence analysis at the bi-

nary level. Furthermore, for the slice to be executable, the approach

needs to ensure that the stack behavior of its output complies with

WebAssembly’s validation requirements. We implemented and eval-

uated our approach on a suite of 8 386 real-world WebAssembly

binaries, finding that the average size of the 495 204 868 slices com-

puted is 53% of the original code, an improvement over the 60%

attained by related work slicing ARM binaries. To gain a more qual-

itative understanding of the slices produced by our approach, we

compared them to 1 956 source-level slices of benchmark C pro-

grams. This inspection helps to illustrate the slicer’s strengths and

to uncover potential future improvements.

KEYWORDS
Static program slicing, WebAssembly, Binary analysis

ACM Reference Format:
Quentin Stiévenart, David W. Binkley, and Coen De Roover. 2022. Static

Stack-Preserving Intra-Procedural Slicing of WebAssembly Binaries. In

44th International Conference on Software Engineering (ICSE ’22), May 21–
29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3510003.3510070

1 INTRODUCTION
The recent inclusion of WebAssembly binaries in web applications

poses new challenges with respect to their security, comprehension,

and reverse engineering.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00

https://doi.org/10.1145/3510003.3510070

WebAssembly [25] “is a binary instruction format for a stack-
based virtual machine” [65] designed as a compilation target for

high-level languages. The specification of its core has been a W3C

standard since December 2019 [49]. WebAssembly was designed for

the purpose of embedding binaries in web applications in a portable

manner, thereby enabling intensive computations on the web. A

2021 empirical study by Hilbig et al. [30] found use cases on the

web as diverse as game engines, natural language processing, and

media players. Thanks to its ability to incorporate runtime functions

exported by the host environment, WebAssembly has also found

usage beyondweb applications, broadening the value of analyses for

WebAssembly. Examples include desktop applications [63], smart

contracts [19], IoT back ends [27], and embedded software [52].

Program slicing [12, 66] is a program decomposition technique

that, based on a specific program point called the slicing crite-
rion, identifies a subprogram of the code relevant to the slicing

criterion. Program slicing has numerous applications, in debug-

ging [32, 37, 67], program comprehension [11, 16, 31, 36, 59], soft-

ware maintenance [23, 26], re-engineering [14], refactoring [20],

testing [4, 28, 29], reverse engineering [2, 3], tierless or multi-tier

programming [45, 46], and vulnerability detection [50].

As such, there are numerous invaluable applications of slicing for

WebAssembly binaries. Slicing, for example, can provide a building

block for reverse engineering and for tools such as binary transla-

tors, profilers, and debuggers [14]. In terms of security, slicing can

help with the inspection of WebAssembly binaries encountered in

the wild where the source code is unavailable. Such often tedious

and time consumingmanual inspections aim to understand the code

well enough to ascertain that it is free from malicious intent. Binary

slicing can also serve applications such as constructing abstract

program models for WCET estimation [41].

Program slicing approaches can be categorized along multiple di-

mensions [51]. Static approaches compute a slice that preserves the

behavior for all possible program inputs, while dynamic approaches
consider only a subset of the inputs. Executable slicing approaches

produce a program that can be executed, while approaches comput-

ing a dependence closure slice do not. Intra-procedural approaches
compute a slice that preserves the behavior of a given function,

while inter-procedural approaches preserve the behavior of the

entire program across function calls. Finally, program slicing can

identify the portion of the program that either affects the slicing

criterion (backward slicing) or is affected by it (forward slicing).
This paper presents the first static intra-procedural backward

slicing approach for WebAssembly that is capable of producing

executable slices. Our approach relies on control and data depen-

dencies to identify the set of instructions that are part of a slice,

given a specific instruction as the slicing criterion. This requires

WebAssembly-specific data dependencies and control dependencies,

https://doi.org/10.1145/3510003.3510070
https://doi.org/10.1145/3510003.3510070
https://doi.org/10.1145/3510003.3510070

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Quentin Stiévenart, David W. Binkley, and Coen De Roover

which we identify and describe in detail. Furthermore, it requires

satisfying the WebAssembly validation requirement: WebAssembly

programs must adhere to a particular stack discipline in order to be

executable. Correctly removing instructions that are not part of the

slice (i.e., that do not have any effect on the slicing criterion) may

violate this property. Thus the slicer must identify places where

the closure slice may leave the stack in an undesirable state and

then compensate by including additional instructions to satisfy the

validation requirement.

This paper makes the following contributions:

(1) We describe the first static intra-procedural backward slicing

approach forWebAssembly. The first two phases of this three-

phase algorithm compute a closure slice of a WebAssembly

binary.

(2) To produce an executable slice, our algorithm’s third phase

implements a stack-preserving approach to produce a valid

executable WebAssembly program from the closure slice.

(3) Using an implementation of our three-phase algorithm, we

empirically evaluate our approach quantitatively on a real-

world data set of 8 386 WebAssembly programs scraped by

Hilbig et al. [30], from which we compute 495 204 868 slices,

and qualitatively by comparing slices produced by our im-

plementation against slices produced by CodeSurfer [58] on

a set of 49 C programs compiled to WebAssembly.
1

2 BACKGROUND: A BRIEF TOUR OF
WEBASSEMBLY

WebAssembly is a stack-based assembly language. For the sake

of simplicity, we describe our approach using a minimal version

of WebAssembly called MiniWasm, introduced by Stiévenart and

De Roover [54]. MiniWasm retains the defining features of Web-

Assembly, including structured control flow, the most essential

assembly instructions, direct function calls, indirect function calls

through function tables, unary and binary operations, and 32-bit

integers. Our implementation actually supports a larger subset of

WebAssembly as demonstrated by our consideration of real-world

programs in our empirical evaluation, where we are able to slice

99.991% of 495 248 788 potential slicing criteria. We describe our

implementation and its limitations in further detail in Section 4.1.

2.1 The MiniWasm Language
Figure 1 depicts the syntax of MiniWasm. A module consists of
a sequence of type declarations (type∗), a sequence of function

declarations (func∗), and a table (table) that identifies the targets of
indirect function calls. As this work presents an intra-procedural
slicing approach, we focus on function declarations. Amore detailed

explanation of MiniWasm and its formal semantics is given by

Stiévenart and De Roover [54].

A function is declared with a type index tidx, which corresponds

to the type declaration at that index in the sequence of type decla-

rations. Functions first declare the types of their local variables. Pa-

rameters and local variables are anonymous and accessed through

an index. For example, a function with one formal parameter and

1
Our implementation is available publicly at https://github.com/acieroid/wassail/tree/

icse2022, and a full replication package is available at https://zenodo.org/record/

5821007.

module ::= (module type∗ func∗ table)

type ::= (type (func ft))

bt, ft ::= 𝑡∗ → 𝑡∗

t ::= i32

func ::= (func (type tidx))

| (func (type tidx) (local 𝑡∗) instr∗)
table ::= (table 𝑛∗)

instr ::= data | control
data ::= drop | 𝑡 .const 𝑛 | 𝑡 .binop | 𝑡 .unop

| local.get 𝑛 | local.set 𝑛
| global.get 𝑛 | global.set 𝑛
| 𝑡 .load | 𝑡 .store

control ::= block bt instr∗ end | loop bt instr∗ end

| ifbt instr∗ else instr∗ end
| callft 𝑛 | call_indirectft | br_if 𝑙

𝑛, 𝑙, tidx ::= a number

Figure 1: Syntax of MiniWasm

two local variables accesses the formal parameter at index 0 and

the local variables at indices 1 and 2. The remainder of a function

declaration is the sequence of instructions that form the function’s

body.

Broadly speaking, there are two kinds of instructions. Control
instructions (e.g., loop and call) structure the program’s control

flow, while data instructions manipulate the stack (drop , const),

locals (local.get and local.set), and globals (global.get

and global.set). Operations (binop and unop) are left unspec-

ified as their concrete instantiation is inconsequential to program

slicing. Blocks (block), loops (loop), and function calls (call ,

call_indirect) are annotated with their types (respectively, bt
and ft). Blocks act as delimiters inside functions for identifying

jump targets. Loops are basically blocks whose semantics capture

the iterating behavior. We include an if instruction in MiniWasm

that was previously treated as syntactic sugar [54]. It is a condi-

tional that encloses one consequent branch and one alternative

branch.

2.2 The SCAMMug in MiniWasm
To illustrate programming inWebAssembly, we consider the “SCAM

Mug” [61] C program, which is heavily used in the slicing litera-

ture. The program, which featured on the souvenir mug given to

attendees at the first SCAM workshop, is designed to challenge

static analysis tools, especially those making use of transitive de-

pendence analysis. For example, the minimal slice at the end of the

code taken with respect to the variable x does not include Line 8

despite the transitive dependence. The code features the following

main function in C where all called functions are side-effect free:

https://github.com/acieroid/wassail/tree/icse2022
https://github.com/acieroid/wassail/tree/icse2022
https://zenodo.org/record/5821007
https://zenodo.org/record/5821007

Static Stack-Preserving Intra-Procedural Slicing of WebAssembly Binaries ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

1 int main() {

2 int i = 0;

3 int x = 0;

4 int c = 0;

5 while (p(i)) {

6 if (q(c)) {

7 x = f();

8 c = g();

9 }

10 i = h(i);

11 }

12 }

The equivalent function in MiniWasm is given below, with func-

tions p, q, f, g, and h assigned the indices 0, 1, 2, 3, and 4 respectively:

1 (func (type 0) ;; int main()

2 (local i32 i32 i32) ;; declare i, x, c

3 local.get 0 ;; push local i

4 call i32→i32 0 ;; p(i)

5 if
6 loop
7 local.get 2 ;; push local c

8 call i32→i32 1 ;; q(c)

9 if
10 call 2→i32 ;; f()

11 local.set 1 ;; x = result of f()

12 call 3→i32 ;; g()

13 local.set 2 ;; c = result of g()

14 end
15 local.get 0

16 call 4i32→i32 ;; h(i)

17 local.set 0 ;; i = result of h(i)

18 local.get 0

19 call 0i32→i32 ;; p(i)

20 br_if 0 ;; loop if stack top

21 end ;; is true

22 end)

On Line 2, the function declares the equivalent of local variables

i (with index 0), x (index 1), and c (index 2). All local variables are
initialized to zero in WebAssembly. Line 3 retrieves and pushes

the value of the first local variable on the stack. The next line calls

function 0, which expects its single argument to be on the top

of the stack (in this case local 0). The if-instruction on Line 5

checks whether the top of the stack (the function’s return value)

is true (differs from 0) and if so executes its then branch, which

captures the body of the loop. An optional else branch is unnecessary
here. This instruction should not be confused with br_if n, which

breaks n nested blocks if the value on the top of the stack is true.
The loop instruction on Line 6 denotes the start of a loop. When

execution encounters a break it re-executes the loop from the start.

In WebAssembly, the “breaking” of a loop behaves like a continue
statement in C. In the example, br_if 0 starts the next iteration

if the value on the top of the stack is true. The “0” signifies which
loop, in this case the immediately enclosing loop (Line 6). If no

breaks are encountered, execution continues with the instruction

that follows the loop’s matching end keyword. Thus Lines 5, 6,

and 20 combine to implement the while loop of the C program.

The body of the loop calls function 1 with local variable 2 (q(c))
on Line 8. If the result of this call is non-zero, it calls function 2 (f)
and assigns the result to local variable 1 (x) on Line 11, and does the

same with function 3 (g) and local variable 2 (c). Finally, near the
end of the loop body on Line 17, local variable 0 (i) is assigned the

result of function 4 (h(i)). Finally, the br_if instruction on Line 20

checks the loop condition (the value on the top of the stack), and

jumps back to the beginning of the loop if the value is non-zero.

2.3 WebAssembly Validation Requirement
WebAssembly programs have to be well formed, according to Sec-

tion 3 of the WebAssembly standard [49]. Of particular interest for

program slicing is that the body of a function has to be well typed.

Each instruction has a specific stack type 𝑡∗
1
→ 𝑡∗

2
, where 𝑡∗

1
is the

expected sequence of types for the values on top of the stack before

the execution of the instruction, and 𝑡∗
2
is the sequence of types for

the values on top of the stack after its execution. For example, the

i32.const 0 instruction has type “→ i32”, meaning that it does

not need anything from the stack and pushes one value of type

i32. Typing extends to sequences of instructions, e.g., the sequence

local.get 0, local.get 1, i32.const 1, i32.add has type

“→ i32 i32”.
The following example illustrates the impact that slicing Web-

Assembly code can have on this validation requirement.

1 (func (type 1)

2 local.get 0 ;; push first parameter

3 if
4 local.get 0 ;; push first parameter

5 local.get 1 ;; push second parameter

6 i32.add ;; slicing criterion

7 call 0i32→i32
8 drop

9 end)

This function takes two parameters (assuming that type 1 is “i32,i32
→ ”). It first pushes the first parameter on the stack (Line 2), and, if

that parameter is non-zero, executes the body of the if statement

(Line 3). This will push both parameters on the stack (Lines 4 and

5), sum them (Line 6), and then call function 0, before dropping

the return value of the call from the stack. This leaves the stack

empty at the end of the function’s execution. If the value of the first

parameter was zero, the if body is not executed, but the condition is

still removed from the stack, hence in both cases the stack is empty

at the end of the function’s execution.

Consider the intra-procedural closure slice taken with respect to

the instruction i32.add . This instruction requires that two values

are available on the stack. Through use-definition chains that can

be computed statically, we know that the first value is computed

by the instruction local.get 1 on Line 5, while the second is

computed by the instruction local.get 0 on Line 4. These are

the data dependencies of the i32.add instruction. The execution

of the i32.add instruction depends on whether the if statement

executes its then branch. Therefore, Line 3 is a control dependency
and needs to be included in the slice too. Finally, the if instruction

has a data dependency on Line 2 as the value pushed is used as

the condition. As a result, we obtain the following closure slice: it

contains all the instructions relevant to the evaluation of the slicing

criterion.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Quentin Stiévenart, David W. Binkley, and Coen De Roover

1 (func (type 1)

2 local.get 0

3 if
4 local.get 0

5 local.get 1

6 i32.add
7 end)

However, this closure slice does not represent a valid WebAssembly

program as it leaves one value on the stack in the if statement.

Any attempt to execute such a program will lead to an error from

the WebAssembly validator. Phase three of our algorithm includes

a drop instruction after Line 6 to effectively clean up the stack.

3 THEWEBASSEMBLY SLICING ALGORITHM
Our algorithm consists of three phases: a data-gathering phase that

computes the dependencies of each instruction in a function, a

slicing phase that identifies the WebAssembly instructions of the

closure slice, and a reconstruction phase that includes additional

instructions to maintain the stack discipline and thus ensure that

the slice is a valid executable WebAssembly function. This section

details each of the three phases.

3.1 Data-Gathering Phase
The data-gathering phase computes the following elements.

Stack Layout. For WebAssembly programs, the layout of the

stack can be computed statically for any instruction, including

loops. A stack specification analysis [54] computes the impact of

every instruction on the stack and assigns names to each element in

the resulting stack layout. To illustrate, the following code has been

annotated with the results of the stack specification analysis where,

for example, [i0] denotes a stack that contains a single element,

denoted by the opaque identifier i0.

1 local.get 0 ;; [i0]

2 i32.const 2 ;; [i1, i0]

3 i32.add ;; [i2]

4 call 1i32→ ;; []

Use-Definition Chains. In order to identify data dependences [43],
uses of each element on the stack are linked to their respective

definitions through use-definition chains [33]. For example, in the

previous code listing the instruction i32.add uses i1 and i0 and
defines i2. Use-definition chains map the use of i1 to its definition
by the instruction i32.const 2 and the use of i0 to its definition

by the instruction local.get 0. Here a use, denoted use, is a pair
consisting of the name of an element on the stack (e.g., i0), and
the occurrence of an instruction (e.g., the position of a specific

i32.const instruction in the binary). We denote the set of uses

of instruction instr as uses(instr) and the set of instructions that

contain the definitions corresponding to a use as defs(use).

Memory Dependences. Identifying data dependences through

use-definition chains alone does not suffice for slicing as there

can be indirect data dependences that arise through the use of

WebAssembly’s linear memory, which models the program heap.

For example, the i32.load instruction in the following code is

data-dependent on the i32.store instruction: a slice that includes

the load instruction but not the corresponding store instruction

would not preserve the semantics.

1 i32.const 1024 ;; stack: [1024]

2 i32.const 0 ;; stack: [1024, 0]

3 i32.store ;; stack: [], stores 0 at 1024

4 i32.const 1024 ;; stack: [1024]

5 i32.load ;; stack: [0], loads 0 from 1024

Modeling memory dependencies precisely requires some form of

alias analysis. To date no alias analysis algorithm has been devised

for WebAssembly. Thus we resort to a sound over-approximation:

all load instructions are marked as potentially data-dependent on

every store that may be executed before the load instruction (i.e.,

for which there exists a path in the CFG from the store to the

load). A similar over-approximation is used for the memory depen-

dencies of call instructions. Indeed, as the following code could

represent the call of a function with a pointer as argument, any pre-

ceding modification to any pointer needs to be included in the slice.

1 i32.const 1024 ;; 1024 could be a pointer

2 call 1

call instructions are therefore treated as both load instructions

(memory can be read during a function call) and store instruc-

tions (memory can be written during a function call). Both over-

approximations could be rendered more precise with additional

information from a sound alias analysis. We denote the instructions

that are memory dependencies of an instruction instr as the set

memoryDeps(instr).

global.set Instructions. In WebAssembly, global variables can

be used to share data across function calls. For example, when

producing WebAssembly, current C compilers use global variable

0 as the address in the linear memory where the stack pointer

resides [38]. Incrementing or decrementing the value of global 0

is used to grow or shrink the stack. Although there might be no

explicit dependence on global variable 0, it is important to include

any instruction that modifies it in the slice. In the case of C programs

compiled to WebAssembly, this ensures that function calls preserve

the same call-stack semantics. For the same reason, and because

our approach is intra-procedural and thus cannot know which

global variables are required across function calls, all global.set

instructions are collected and considered part of the slice. This over-

approximation is independent of the slicing criterion. This is again a

conservative over-approximation: in practice, not all global.set

instructions are relevant for the slicing criterion. We denote the set

of all global.set instructions as globalSetInstrs.

Control Dependences. In addition to data dependences, slices

need to account for control dependences as they capture whether

an instruction is executed or not. Consider the following example,

where the value of local variable 0 is initially set to 0, and then set

to 1 if the value of local 1 is true (i.e., any non-zero value).

Static Stack-Preserving Intra-Procedural Slicing of WebAssembly Binaries ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

1 i32.const 0

2 local.set 0 ;; local 0 = 0

3 local.get 1

4 if
5 i32.const 1

6 local.set 0 ;; local 0 = 1

7 end
8 ;; value of local 0 depends on

9 ;; the value of local 1

10 local.get 0

Here, the instruction local.set 0 in the body of the if is control-

dependent on Line 4, which is data-dependent on the instruction

local.get 1. Hence, both the if and local.get 1 instructions

will need to be included in any slice that includes the instruction

local.set 0 on Line 6. We rely on the so-called “exact algorithm”

by Ferrante et al. [21] to compute control dependences. We write

controlDeps(𝑏) = {𝑎} when Instruction 𝑏 is control-dependent on

Instruction 𝑎, or in other words, when there is a control-dependence

from 𝑎 to 𝑏. Hence, controlDeps(instr) maps an instruction to the

instructions on which it depends on due to control dependences.

3.2 Slicing Phase
Our algorithm for identifying the instructions that makeup the

closure slice is inspired by traditional approaches to slicing [67]

where the slicing criterion, data dependences, and control depen-

dences are used to transitively add instructions to the slice. We

include Agrawal’s additions for structured control flow [1], which

are required to properly support WebAssembly’s structured jump

instructions (e.g., br). Note that unlike most slicing approaches

where the slicing criterion includes a program location and one

or more variables of interest, we only require a program location,

given as an instruction, as the slicing criterion. The variables of

interest are implicitly determined by the instruction.

In order to support WebAssembly, however, two domain-specific

extensions are needed. First, becausewe do not have inter-procedural

information, global.set instructions are considered part of the

slice as explained previously. Second, without precise aliasing in-

formation any write to the memory potentially influences any sub-

sequent read from the memory, thus memory dependences come

into play as soon as any read is included in the slice.

Our slicing algorithm, given as Algorithm 1, works as follows.

The slice starts empty (Line 1) and the initial worklist contains the

instruction that is the slicing criterion as well as all global.set

instructions found in the function being sliced (Line 2). The algo-

rithm then proceeds as a typical worklist algorithm. Instructions

instr in the worklist that are already part of the slice are ignored

(Line 6). Other instructions are added to the slice (Line 7) and their

dependencies are added to the worklist:

• use-definition chains are followed to find data dependences:

for each use of a value on the stack (Line 8), the instructions

that define that value are added to the worklist (Line 9),

• the control dependencies of the current instruction are added

to the worklist (Line 10),

• the memory dependencies of the current instruction are

added to the worklist (Line 11).

Once the worklist is exhausted, the resulting slice is augmented

according to Agrawal’s technique, specifically the conservative algo-
rithm given in Fig. 13 of their paper [1], where the br instructions

(as unconditional jumps in WebAssembly) are treated as goto state-
ments. For each instruction in the slice, all br instructions that

are control-dependent on the instruction are added to the slice

(Line 16). The slicing algorithm returns the slice augmented with

these additions (Line 17).

slice(slicing criterion c, set of global.set instructions
globalSetInstrs, set of br instructions brInstrs, use of stack
locations uses, use-definition chains defs, control dependences
controlDeps, memory dependences memoryDeps)

1 let slice← {};
2 let workList← {𝑐} ∪ globalSetInstrs;

3 while workList ≠ {} do
4 let instr ∈ workList;
5 workList← workList \ {instr};
6 if instr ∉ slice then
7 slice← slice ∪ {instr};
8 for use ∈ uses(instr) do
9 worklist← worklist ∪ defs(use);

10 worklist← worklist ∪ controlDeps(instr);
11 worklist← worklist ∪ memoryDeps(instr);
12 let sliceExtension← {}
13 for instr ∈ brInstrs do
14 for instr’ ∈ slice do
15 if instr’ ∈ controlDeps(instr) then
16 sliceExtension← sliceExtension ∪ {instr};
17 return slice ∪ sliceExtension;

Algorithm 1: Slicing Algorithm

3.3 Reconstruction Phase
The closure slice computed by the previous phase may not form

a valid WebAssembly function. To illustrate why and to show the

reconstruction’s impact both before and after an instruction of the

slice, we use the following code fragment. The fragment has type

“→ ” (i.e., it does not consume anything from the stack nor produce

anything onto the stack). Its constituent instructions have been

annotated with their own types:

1 local.get 0 ;; → i32
2 i32.const 2 ;; → i32
3 i32.add ;; i32, i32→ i32
4 call i32→ ;; i32→

Suppose this fragment is sliced with respect to Line 2. The instruc-

tion i32.const 2 forms a closure slice on its own because it is

not influenced by any other instruction in the fragment. However,

this slice has type “→ i32”, while the type of the original fragment

is “→”. As the fragment may reside in a WebAssembly construct,

such as a block or a function, that expects a specific type, replacing

the fragment by its slice will result in an invalid WebAssembly

program.

To overcome this issue, reconstruction augments the closure slice

with synthetic instructions that preserve the original stack layout

and thereby render the slice valid and executable. Adding these

synthetic instructions is safe, because they have no side effects on

the program behavior regarding the slicing criterion. The sequence

of synthetic instructions that is introduced must have the same

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Quentin Stiévenart, David W. Binkley, and Coen De Roover

type as the sequence of instructions it replaces. The fragment below

illustrates the rewriting. It includes type summaries in place of the

instructions that are not part of the slice. Note how the types of the

final two instructions (i32.add and call i32→) have been merged

into a single type summary that has the same effect on the stack.

1 ?? ;; → i32
2 i32.const 2 ;; → i32
3 ?? ;; i32, i32→

The goal of the reconstruction phase is to add synthetic instructions

that have the desired type summary. Our reconstruction phase uses

i32.const when a summary pushes an i32 value on the stack and

drop to remove a value from the stack. This process results in

the following reconstructed slice, which is of the same type as the

original fragment.

1 i32.const 0 ;; → i32
2 i32.const 2 ;; → i32
3 drop ;; i32→
4 drop ;; i32→
While the reconstructed slice has the same type as the original

fragment, it is not minimal: i32.const 2; drop is shorter and an

equally valid slice. We have opted to not attempt a global minimum

but rather one that is local to each summary (e.g., drop; drop is

the minimal set of instructions with the type “i32,i32→ ” that can

be inserted in place of the second summary, “?? ;; i32, i32 →”).

This design choice has the advantage of only requiring a single

linear traversal of the fragment’s instructions.

Algorithm 2 depicts the reconstruction algorithm. We use the ·
operator to concatenate sequences: [1, 2] · [3] is [1, 2, 3], and over-

load it to insert an element between two sequences: [1, 2] · 3 · [4] is
[1, 2, 3, 4]. Auxiliary function isInSlice identifies the instructions that
are part of the closure slice according to Algorithm 1. Auxiliary func-

tion replace returns a sequence of synthetic i32.const and drop in-

structions such that the type of the entire sequence is the same as the

instructions being substituted. For example, replace(i32.const 1;

i32.const 2; i32.add) returns i32.const 0, because both se-

quences of instructions push a single value onto the stack.

Function validSlice returns a type-valid WebAssembly slice for a

given sequence of instructions. To produce an executable slice it

is initially called with the body of the sliced function—from which

the result is built up recursively. Instructions that are part of the

closure slice will be included in the result together with synthetic

instructions that replace instructions that are not part of the slice

while preserving their summary type. The algorithm maintains in

its second argument a sequence, removed, of instructions that are
not part of the closure slice and thus will be replaced by synthetic

instructions.

If there are no instructions to process (Line 1), meaning that the

last instruction of a sequence has been processed, any remaining

instructions in removed are replaced by a type-equivalent sequence

of synthetic instructions (Line 2). For instructions that contain

sequences of instructions (block , loop), the corresponding body

is first processed recursively (Line 7). If there are no instructions

to keep in the body, the instruction itself is added to the sequence

of instructions to remove (Line 9). Otherwise, its body is replaced

with the sliced body (Line 11) and the subsequent instructions are

processed (Line 12). The process for an if instruction is similar

(Line 13) except that both branches need to be processed and the

instruction can be removed only if both branches become empty

(Line 16).

For all other instructions, if the instruction is part of the closure

slice (Line 21), the previous instructions that have been removed

are first replaced by their equivalent synthetic instructions, then

the instruction is added to the result before the results of processing

the subsequent instructions (Line 22). Otherwise, if the instruction

is not part of the slice (Line 23), it is appended to removed (Line 24)

and a recursive call is made on the remaining instructions. As a

result, one obtains a valid, executable, WebAssembly program that

is a superset of the closure slice that preserves the behavior of the

slicing criterion and is thus executable.

isInSlice(instruction instr)
checks whether instr is part of the slice;

replace(sequence of instructions instrs)
return a sequence of dummy instructions that has the same

type as instrs;
validSlice(sequence of instructions instrs,

sequence of instructions removed)
1 if instrs = ⟨⟩ then
2 return replace(removed);
3 else
4 let instr← head(𝑖𝑛𝑠𝑡𝑟𝑠);
5 let instrs← tail(𝑖𝑛𝑠𝑡𝑟𝑠);
6 if instr is a block or loop instruction then
7 let body←validSlice(instr.body, ⟨⟩);
8 if body = ⟨⟩ then
9 return validSlice(instrs, removed · instr);

10 else
11 let instr’← instr with its body set to body;
12 return

replace(removed) · instr’ · validSlice(instrs, ⟨⟩);
13 else if instr is an if instruction then
14 let then←validSlice(instr.then, ⟨⟩);
15 let else←validSlice(instr.else, ⟨⟩);
16 if then = else = ⟨⟩ then
17 return validSlice(instrs, removed · instr);
18 else
19 let instr’← instr with its branches set to then

and else;
20 return

replace(removed) · instr’ · validSlice(instrs, ⟨⟩);
21 else if isInSlice(instr) then
22 return

replace(removed) · instr · validSlice(instrs, ⟨⟩);
23 else
24 return validSlice(instrs, removed · instr);

Algorithm 2: Slice Reconstruction Algorithm

4 EVALUATION
We evaluate our approach through the following research questions.

RQ1: How does static stack-preserving slicing behave on classical
slicing examples? The literature on program slicing has produced

Static Stack-Preserving Intra-Procedural Slicing of WebAssembly Binaries ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

several challenging examples which have each been studied exten-

sively. We manually translate these examples to WebAssembly and

inspect the output of our slicer for each.

RQ2: What is the size of closure slices built by our slicing phase?
We apply our approach to the dataset collected by Hilbig et al. [30],

which consists of real-world occurrences of WebAssembly from

the web. We use each instruction of each function in the dataset

as a slicing criterion to which we apply Algorithm 1. We present

descriptive statistics about the size of the resulting closure slices.

RQ3: By how much do slices need to grow in order to render them
executable? Relying on the same dataset as used in RQ2, wemeasure

the increase in slice size after the closure slice has been rendered

executable.

RQ4: How much time is needed by each phase in order to compute
an executable slice? We measure the time needed by each phase

when computing an executable slice.

RQ5: How does static stack-preserving slicing of WebAssembly
binaries compare to slicing the original source code directly, before
its compilation to WebAssembly? In cases where the source code

of a WebAssembly program is available, it might be preferable to

slice the source code instead of the binary. We compare the results

of our approach to the static slices of C programs computed by

CodeSurfer [58].

We conducted our evaluation on a machine with an AMD Ryzen

Threadripper 3990X 64-Core CPU (2.9 GHz) with HyperThreading

and 256 GiB of RAM, running 128 slicing jobs in parallel (one per

logical core). Before detailing the research method and results for

each of these research questions, we briefly describe our implemen-

tation.

4.1 Implementation
We implemented the approach described in this paper on top of the

Wassail framework [55], using OCaml version 4.12.0. Its loader

for WebAssembly binaries is based on the implementation that ac-

companies the official WebAssembly standard. Our implementation

first conducts the data-gathering phase described in Section 3.1.

Next, it identifies the instructions of the closure slice using Algo-

rithm 1, before rendering the slice executable using Algorithm 2.

Our implementation supports most of the WebAssembly 1.0 core

specification [49], but has the following limitations:

• The br_table instruction is only supported when all its

targets expect the same stack layout. This is a limitation of

the stack specification analysis.

• Code that lies in a CFG node that is disconnected from the

CFG entry node cannot be used as the slicing criterion be-

cause our implementation of use-definition chains requires a

path from the entry node of the CFG to the slicing criterion.

These limitations both concern the data-gathering phase, and we

leave overcoming them for future work. In our evaluation with a

real-world dataset, we encountered these limitations in 0.009% of

the slices, where 28% of the non-supported slices are caused by

unsupported uses of the br_table instruction, and 72% by discon-

nected code.

4.2 RQ1: Behavior on Classical Examples
We first perform a qualitative evaluation of our slicing approach on

examples that have been studied in the slicing literature, namely

the SCAM Mug example [61], the Montréal Boat example [15],

Word Count [23], and Agrawal’s control examples [1]. We manu-

ally encoded each program to WebAssembly, before applying our

approach. All source programs and the computed slices are available

in our replication package.

Our first example is the SCAM Mug example presented in Sec-

tion 2 using Line 11, local.set 1, as the slicing criterion. Key

to understanding the challenge in this example is to realize that

the value assigned to c does not effect the value of x at Line 11.

Thus a minimal slice would exclude Lines 12 and 13. However, the

expected behavior of a slicer based on transitive dependence is to

include these lines [8]. Our slicer correctly produces the expected

slice including these lines.

The Montréal Boat example [15] poses a similar dependence

challenge. Being based on dependence closure our approach is

unable to tease apart the dependences. However, it does correctly

produce the expected, non-minimal, slice.

TheWord Count example, introduced by Gallagher and Lyle [23],

uses five different slicing criteria (e.g., a slice that computes just

the number of lines in the input). After translating this example

to WebAssembly, we produced the five corresponding slices and

manually compared each to the expected result provided by Gal-

lagher and Lyle, translated to WebAssembly. In each case our slicer

produces the desired minimal slice.

The examples of Agrawal [1] demonstrate the need to treat un-

conditional jumps when slicing programs that use goto statements.

We translated the examples from Figures 3 and 5 of their paper to

WebAssembly, along with the expected slices. Our slicer correctly

includes the necessary unconditional jumps (br instructions). It
does include more instructions than the translation of Agrawal’s

slices. This is due to the fact that purity assumptions that are made

in Agrawal’s slices regarding some called functions are not made

by our slicer. However, our slicer produces correct slices.

RQ1: While our approach shares the limitations of other static

slicers on examples such as the SCAM Mug and the Montréal

Boat examples, it performs well on the more straightforward

examples. It is exact when computing the Word Count slices,

and the slices for each of Agrawal’s examples merely include

unwanted call instructions due to our over-approximation of

memory dependences.

4.3 RQ2: Closure Slice Size
Hilbig et al. [30] gathered a dataset of 8 461 unique WebAssembly

programs. We use this dataset in our evaluation after filtering out

the 75 programs that could not be loaded. For each of the 17 88 688

functions in the remaining programs, we use each instruction as a

slicing criterion yielding 495 204 868 slices. This is akin to related

work [9] which used each SDG vertex as a slicing criterion. We use

a timeout of 4 hours per program.

The dataset, our implementation and evaluation scripts, and

the data resulting from our evaluation for RQ2, RQ3, and RQ4 are

available in our replication package.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Quentin Stiévenart, David W. Binkley, and Coen De Roover

The size of the initial functions and their closure slices are sum-

marized in Figure 2. The mean size of the slices produced by Algo-

rithm 1 is 𝜇 = 52% of the original function size. This is more than

the 27-30% averages obtained by the C slicing techniques surveyed

by Binkley and Harman [10]. There are two potential reasons for

this. First, WebAssembly, being lower level than C, provides fewer

semantic cues to the slicer. Second, our over-approximations regard-

ing the memory and global.set instructions can increase slice size.

However our 52% is lower than the 60% average slice size reported

by Kiss et al. when slicing ARM binaries [34, 35]. In this case the

likely cause is WebAssembly’s use of structured control flow.

RQ2: Our slicing algorithm (Algorithm 1) computes slices that

are on average 52% of the size of the original program, which is

lower than related work on binary slicing, but larger than the

results of source code slicers.

10 100 500 1000

initial size

closure slice

executable slice

Size (number of instructions)
 for slices with <= 1000 instructions

1% 25% 50% 100% 200%

closure slice

executable slice

Size (percentage of initial size)
 for all slices

Figure 2: Sizes of the slices on a real-world dataset.

4.4 RQ3: Executable Slice Size
We now turn to the impact of Algorithm 2, which produces valid,

executable slices from the closure slices studied by RQ2. As shown

in Figure 2 the size of the slices increases from 52% to 53%. As

evidenced by the outliers in the lower graph, some executable slices

are larger than the original program. This phenomenon is limited

to a handful of the slices (in total, it affects only 0.08% of the slices),

where an average of 2.2 instructions are included per slice.

We manually investigated a statistically relevant sample (384

slices
2
) of these cases to identify underlying causes. The most com-

mon cause, impacting 98% of the manually investigated slices, is

when an instruction that removes two or more values from the

stack that is not part of the closure slice gets replaced by two or

more drop instructions, resulting in a positive net change to the

number of instructions. For example, removing a call to a func-

tion with 20 arguments replaces the call instruction with 20 drop

instructions, thereby increasing the slice size by 19 instructions.

2
Based on a population size of 380 364, with a confidence level of 95% and a margin of

error of 5%.

Three instructions remove two or more values from the stack in

WebAssembly: select , which pops three values and pushes one,

store , which pops two values, and call , which pops as many

values as there are arguments to the function call. In the worst

case, a function had 32 call instructions to a 12-argument func-

tion, resulting in 352 drop instructions being added. In our manual

investigation, we encountered 1881 instances of this pattern due

to call or call_indirect instructions, 20 due to store instruc-

tions, and 9 due to select instructions. The only other cause we

encountered for an increase in the size of the executable slice is

due to type conversions: for example, the i32.wrap_i64 instruc-

tion converts an i64 into an i32 in a single instruction, while our

slicer replaces it by two instructions: drop; i32.const 0. We

encountered this pattern only six times.

RQ3: Algorithm 2, reconstruction, has a small impact on slice

size, which goes from an average of 52% to 53%.

4.5 RQ4: Time to Produce Executable Slices
We measured the time it takes for each phase in order to compute

each slice and summarize the results in Figure 3.

10 s 100 s 1ms 10ms100ms 1s 10s 1min 10min 1h

Data-gathering phase

1 s 10 s 100 s 1ms 10ms100ms 1s 10s 1min 10min

Slicing phase

1 s 10 s 100 s 1ms 10ms 100ms 1s 10s 1min

Reconstruction phase

Figure 3: Slicing time.

The mean time for the entire slicing process (the data-gathering

phase followed by Algorithms 1 and 2) is 𝜇 = 4 094ms. Only 14%

of the slices take more than a second to compute. Looking at the

breakdown between the different phases, we observe that the time

to produce a slice is dominated by the data-gathering phase, taking

3 964ms on average and at most 3 hours and 42 minutes, while

Algorithm 1 takes 104ms on average, and at most 44 minutes and

14 seconds, and Algorithm 2 takes 25 ms on average, and at most 3

hours and 22 minutes.

Investigating the data-gathering phase in more detail, we ob-

serve that the time is dominated by the computation of the data

dependences (𝜇 = 1 672ms), the memory dependences (𝜇 = 360ms)

and the stack specification analysis (𝜇 = 1 811ms), while the time

required for the CFG construction (𝜇 = 107ms), the computation

of the control dependences (𝜇 = 13ms), and listing the globals (𝜇 =

247 µs) remains small.

Static Stack-Preserving Intra-Procedural Slicing of WebAssembly Binaries ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Regarding the outliers, we observe that they concern slices of

functions of thousands of instructions. In some cases, the compu-

tation of the data dependencies takes most of the time. However,

when many instructions are removed, the reconstruction algorithm

may take the majority of the time. For example, the longest run-

ning time for the reconstruction algorithm is on a function that is

reduced from 11k instructions to only 8.

RQ4: It takes on average 4 094ms to compute an executable

slice. This time is dominated by the data-gathering phase and its

computation of the data and memory dependences in particular.

The time required to reconstruct an executable slice (25 ms on

average) is only a fraction of the time required to construct the

closure slice (104ms on average).

4.6 RQ5: Comparison to Slicing C Programs
When available, it can be beneficial to slice the source code directly

rather than its WebAssembly counterpart. Furthermore, manual

comparison of source slices compiled to WebAssembly with our

WebAssembly slices enables characterizing the impact of the over-

approximations used by our slicer. To investigate, we selected a set

of 49 C programs originating from multiple sources. These include

programs from the slicing literature, programs used to compare

and evaluate WCET analysis tools [40], and programs designed to

benchmark language implementations [22].

Each program was first normalized by pretty printing it using

the pycparser Python library. After normalization these programs

range from 16 to 2 988 source lines of code (SLOC), with an average

of 207 SLOC, according to the tool sloccount. For each statement

in these programs that modifies a scalar variable, we produced a

variant of the program that includes a printf statement that prints

the value of the variable, which is used as the slicing criterion.

We sliced each variant with CodeSurfer [58] and with our ap-

proach, as follows:

• We used CodeSurfer to produce a static closure slice of each

C program. Because CodeSurfer does not produce executable

slices, we apply quasi-static executable slicing (QSES) [53],

which uses observation-based slicing (ORBS) to augment

a CodeSurfer slice with the statements needed to make it

executable [5]. This results in compilable slices. Each slice

was then compiled to WebAssembly.

• We also compiled each variant directly to WebAssembly, and

applied our approach using the instruction corresponding

to the added printf statement as the slicing criterion.

In both cases, the C programs were compiled to WebAssembly

using Clang 12.0.1 with the -O2 -fno-inline-functions -lm
-Wl,–demangle -Wl,–export-all flags. We remove slices that

encountered one of the limitations described in Section 4.1, as

well as those whose CodeSurfer slices produce WebAssembly that

cannot be loaded by our implementation. In the end, we obtain

1 956 pairs of slices to compare.

We manually investigated a statistically relevant sample of 95

slices
3
that included two slices from each program (except for three

3
Based on a population size of 1 956, with a confidence level of 95% and a margin of

error of 10%.

programs that only had one slice) in order to understand any dif-

ferences. As described below, we identified three main root causes

for the differences in instructions between each pair of slices. All

of the slices as well as the details of our manual investigation are

included in our evaluation package.

Memory Over-Approximation. The majority of the differences

are due to our over-approximation of the memory dependences.

As soon as the slice includes a call or a load instruction, our

approach will include in the slice all store and call instructions

that may be previously executed according to the CFG. In order

to encode the slicing criterion for CodeSurfer, a call to the printf
function is added to the code. This means that all slices for this

RQ include a function call, and as a result our approach always

includes memory dependencies in the slice. We encountered this

pattern in 52% of the investigated slices.

Compiler Optimizations. The slices produced byCodeSurfer some-

times benefit from additional compiler optimization. We encoun-

tered various patterns related to this root cause. These differences

can render the CodeSurfer slices quite different, and reconstructing

the correspondence with the original program can require signifi-

cant mental effort. In these cases, preserving the correspondence

between its slices and the input program is a desirable property of

our approach.

The CodeSurfer slice sometimes produces fewer instructions to

manipulate memory. For example, the following code shows the

slice produced by our approach on the left, and the slice produced

by CodeSurfer on the right. The offset option of a store instruction
enables writing at a specific offset from the target address of the

store operation. Our approach preserves the offset of the store in-
struction from the original program, while CodeSurfer can remove

it. This results in 2 superfluous instructions in our slice, for passing

the written address as argument to the function call on the last line.

1 local.get 0 local.get 0

2 i32.const 2000 i32.const 2000

3 i32.store offset =16 i32.store
4

5 local.get 0 local.get 0

6 i32.const 16

7 i32.add
8 call 1 call 1

Another instance of this pattern is that the control-flow struc-

ture of the program may be simplified, but our approach does not

apply such rewritings. Here is an excerpt of a difference between

a slice produced by our slicer (left), which preservers the origi-

nal control-flow structure, and the corresponding CodeSurfer slice

(right), which has two fewer instructions (block and br 1).

1 block
2 local.get 0 local.get 0

3 i32.const 1 i32.const 1

4 i32.lt_s i32.ge_s
5 if if
6 br 1

7 end
8 loop loop
9

10 end end
11 end ;; block end ;; if

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Quentin Stiévenart, David W. Binkley, and Coen De Roover

In some cases, Clang inlines loops in the WebAssembly code,

resulting in an increase in size for the CodeSurfer slices. Other cases

falling under this root cause include the use of fewer local variables

by CodeSurfer when, for example, multiple local variables always

have the same value in the slice, the reversing of a loop iteration

order when it is beneficial for code size, or changing the type of

a function when its return value is not needed, thereby avoiding

extra instructions to return a value. We have observed this root

cause in 54% of the manually investigated slices.

Inter-procedural vs. intra-procedural. CodeSurfer’s computation

of inter-procedural slices has the impact that, when 𝑓 is recursive

CodeSurfer includes code reached both directly (in the “current”

invocation of 𝑓) and indirectly via recursive calls to 𝑓 . For example,

if 𝑓 ’s return value is used in a control-flow decision upon which

the slicing criteria is itself dependent, CodeSurfer will preserve

the computation of 𝑓 ’s return value. In contrast, our approach

never includes instructions required solely to support recursive

calls. This is a root cause that we encountered in 20% of themanually

investigated slices.

RQ5: When the C source code of an application is available,

compiling a C slice to WebAssembly may produce smaller slices.

The main causes of this are the memory over-approximations

made by our slicer and the extra optimizations enabled when

compiling the simpler code of the slice. On the other hand, due

to compiler optimizations, C slices compiled to WebAssembly

may differ significantly from the corresponding portions of the

directly sliced WebAssembly code. This can hamper program

comprehension of the resulting slices.

4.7 Discussion
The results of our investigation indicate that slicing WebAssembly

programs directly can greatly reduce their size, facilitating appli-

cations such as reverse engineering and program comprehension.

Moreover, obtaining an executable slice only requires a small in-

crease in slice size, and can be done quite quickly.

We identify two main possible improvements. First, regarding

slice size, having alias information would eliminate superfluous

instructions that are currently included due to our memory over-

approximation. Second, regarding slice time, effort should be spent

on optimizing the data-gathering phase, in particular the computa-

tion of the data dependences.

Finally, we observe that when the C source code of an applica-

tion is available, even though the slice sizes may increase, it can

be beneficial in terms of program comprehension to slice at the

WebAssembly level directly.

4.8 Threats to Validity
To conclude our evaluation, we identify threats to validity according

to the classification ofWohlin et al. [68]. A threat to internal validity

comes from our evaluation setup on the real-world dataset. For some

of the 8 386 programs it is infeasible to compute all of the slices;

thus, we rely on a timeout of 4 hours per program and let the slicer

compute as many slices as possible in that time. We were able to

compute 495 204 868 in total, and the evaluation ran to completion

without timeout on 83% of the programs.

Our implementation has limitations that we described in Sec-

tion 4.1, which form a threat to construct validity. However, we do

not expect to observe a different outcome in our results if these

limitations are lifted, as we do not expect instructions within these

disconnected sections or accessible from a br_table instruction to

be too different from other instructions in the code.

A threat to external validity is that among the 8 386 programs

used in our evaluation of RQ2 and RQ3, there can be duplicate func-

tions across different binaries, which we have not filtered out and

could therefore have been sliced multiple times. This is mitigated

by the high number of functions sliced in total, which limits the

potential impact of this threat on the results.

Our dataset for RQ5 is composed of 49 C programs that we

manually gathered. Being less varied than the first dataset of 8,386

programs, it forms a threat to the external validity for RQ5. However,

we ensured the diversity of this dataset by gathering it from three

different sources.

5 RELATEDWORK
WebAssembly. There has been interest from the research commu-

nity in WebAssembly on aspects such as security [24, 38, 42, 56, 57],

extensions to the language [17, 47], tooling [48], and optimiza-

tions [13]. In terms of program analysis, Lehmann and Pradel in-

troduced a framework for dynamic analysis of WebAssembly [39],

Watt et al. a first-order program logic to verify WebAssembly pro-

grams [64], and Stiévenart and De Roover a static information

flow analysis [54] based upon a static analysis framework for Web-

Assembly [55]. Our approach is entirely static and is based on that

same framework.

Perényi andMidtgaard performed property-based testing ofWeb-

Assembly runtimes [44]. The shrinking phase of their approach

also faces the problem that the generated program needs to pass

the validation requirement, which is solved through a different

rewriting phase.

Binary Slicing. Static slicing has been applied to binary executa-

bles with a focus on register-based assembly languages whereas

WebAssembly itself is stack based. Cifuentes and Fraboulet [14]

perform intra-procedural static slicing on an assembly language

close to x86. They argue that using basic blocks as the node granu-

larity is more appropriate for binary executables, as the number of

instructions can be large. Unfortunately, this approach is evaluated

on a single example. Our approach in contrast operates on individ-

ual instructions, and its evaluation on real-world data demonstrates

the feasibility of slicing at this level. Like ours, their approach does

not include any alias analysis.

Inter-procedural static slicing for binaries has been achieved by

Kiss et al. [35] and was later extended to include dynamic informa-

tion during slicing [34]. Special care is needed to handle indirect

function calls, which is not necessary for an intra-procedural ap-

proach. Similarly, the tool presented by Mangean et al. performs

inter-procedural static slicing [41]. Ward et al. combined dynamic

and static slicing for analyzing binaries, through conditioned slic-

ing [62], with the goal of analyzing and migrating assembler sys-

tems. A dynamic slice is first computed, before being augmented

with information from a transformation-based static slice.

Static Stack-Preserving Intra-Procedural Slicing of WebAssembly Binaries ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

In terms of slicing stack-based assembly languages, there has

been related work on slicing JVM bytecode. Umemori et al. present

a static approach which requires the presence of the Java source

code alongside the JVM bytecode [60], while our approach does not

rely on the presence of the source code. Castaldo D’Ursi et al. slice

JVM bytecode after converting it to Jimple code, which eliminates

the need to deal with stack-based bytecode [18]. Currently, there

exists no equivalent to Jimple for WebAssembly, and our approach

therefore directly handles the stack-based nature of WebAssembly.

Zhao presents a dependence analysis for Java bytecode, with slicing

as one of its application [69]. However, the handling of instructions

that manipulate the value stack is omitted from their description.

Language-Independent Slicing. Binkley et al. present ORBS, a

language-independent slicing approach that observes the program

output in order to build an executable slice [5], which works at the

line level [6, 7]. We rely on the QSES extension of ORBS [53] to re-

construct executable C slices from CodeSurfer for our fifth research

question. ORBS could in theory be applied to WebAssembly pro-

grams directly, on the condition that the program is instrumented

to capture the slicing criterion as part of the program’s output. We

leave a comparison with the resulting dynamic slices for future

work.

6 CONCLUSION
We introduced the first static intra-procedural backward slicing

approach for WebAssembly binaries. This three-phased approach

consists of a data-gathering phase, which computes all the nec-

essary information for slicing, a slicing phase, which constructs

a closure slice that contains all instructions needed to preserve

the behavior of the slicing criterion, and a reconstruction phase,

which produces an executable slice from the closure slice. This last

phase is needed because WebAssembly programs have to adhere to

a validity requirement to be executable.

We evaluated our approach on a real-world dataset of 8 386

programs. We observed that our approach results in executable

slices that are on average of 53% of the original function. The

time needed to compute these slices averages 4 094ms where most

of that time is spent on the data-gathering phase, in particular

in the computation of data dependences. Through a qualitative

comparison of the slices produced by our approach with executable

C slices compiled toWebAssembly, we find that incorporating some

form of alias analysis in the slicing process should notably reduce

the average slice size.

This work forms an important stepping stone towards binary

analysis applications such as reverse engineering and program

comprehension.

REFERENCES
[1] Agrawal, H.: On slicing programs with jump statements. In: Sarkar, V., Ryder,

B.G., Soffa, M.L. (eds.) Proceedings of the ACM SIGPLAN’94 Conference on

Programming Language Design and Implementation (PLDI). pp. 302–312. ACM

(1994), https://doi.org/10.1145/178243.178456

[2] Akgul, T., III, V.J.M., Pande, S.: A fast assembly level reverse execution method

via dynamic slicing. In: 26th International Conference on Software Engineering

(ICSE 2004). pp. 522–531 (2004)

[3] Beck, J., Eichmann, D.: Program and interface slicing for reverse engineering. In:

15th International Conference on Software Engineering. pp. 509–518 (1993)

[4] Binkley, D.W.: The application of program slicing to regression testing. Inf. Softw.

Technol. 40(11-12), 583–594 (1998)

[5] Binkley, D.W., Gold, N., Harman, M., Islam, S.S., Krinke, J., Yoo, S.: ORBS:

language-independent program slicing. In: Cheung, S., Orso, A., Storey, M.D.

(eds.) Proceedings of the 22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering, (FSE-22). pp. 109–120. ACM (2014), https:

//doi.org/10.1145/2635868.2635893

[6] Binkley, D.W., Gold, N., Islam, S.S., Krinke, J., Yoo, S.: Tree-oriented vs. line-

oriented observation-based slicing. In: 17th IEEE International Working Confer-

ence on Source Code Analysis and Manipulation, SCAM 2017. pp. 21–30. IEEE

Computer Society (2017), https://doi.org/10.1109/SCAM.2017.11

[7] Binkley, D.W., Gold, N., Islam, S.S., Krinke, J., Yoo, S.: A comparison of tree- and

line-oriented observational slicing. Empir. Softw. Eng. 24(5), 3077–3113 (2019),
https://doi.org/10.1007/s10664-018-9675-9

[8] Binkley, D.W., Gold, N.E., Harman, M., Islam, S.S., Krinke, J., Yoo, S.: ORBS and

the limits of static slicing. In: Godfrey, M.W., Lo, D., Khomh, F. (eds.) 15th IEEE

International Working Conference on Source Code Analysis and Manipulation,

SCAM 2015. pp. 1–10. IEEE Computer Society (2015), https://doi.org/10.1109/

SCAM.2015.7335396

[9] Binkley, D.W., Harman,M.: A large-scale empirical study of forward and backward

static slice size and context sensitivity. In: 19th International Conference on

Software Maintenance (ICSM 2003). pp. 44–53. IEEE Computer Society (2003),

https://doi.org/10.1109/ICSM.2003.1235405

[10] Binkley, D.W., Harman, M.: A survey of empirical results on program slicing. Adv.

Comput. 62, 105–178 (2004), https://doi.org/10.1016/S0065-2458(03)62003-6
[11] Binkley, D.W., Raszewski, L.R., Smith, C., Harman, M.: An empirical study of

amorphous slicing as a program comprehension support tool. In: 8th International

Workshop on Program Comprehension (IWPC 2000). pp. 161–170 (2000)

[12] Binkley, D.W., Harman, M.: A survey of empirical results on program slicing.

Advances in Computers 62, 105–178 (2004)
[13] Cabrera-Arteaga, J., Donde, S., Gu, J., Floros, O., Satabin, L., Baudry, B., Monperrus,

M.: Superoptimization of WebAssembly bytecode. In: Aguiar, A., Chiba, S., Boix,

E.G. (eds.) Programming’20: 4th International Conference on the Art, Science,

and Engineering of Programming. pp. 36–40. ACM (2020), https://doi.org/10.

1145/3397537.3397567

[14] Cifuentes, C., Fraboulet, A.: Intraprocedural static slicing of binary executables.

In: 1997 International Conference on Software Maintenance (ICSM ’97). p. 188.

IEEE Computer Society (1997), https://doi.org/10.1109/ICSM.1997.624245

[15] Danicic, S., Howroyd, J.: Montréal boat example. In: Source Code Analysis and

Manipulation (SCAM 2002) conference resources website (2002)

[16] De Lucia, A., Fasolino, A.R., Munro, M.: Understanding function behaviours

through program slicing. In: 4
𝑡ℎ

Intl. Workshop on Program Comprehension

(1996)

[17] Disselkoen, C., Renner, J., Watt, C., Garfinkel, T., Levy, A., Stefan, D.: Position

paper: Progressive memory safety for WebAssembly. In: Proceedings of the 8th

International Workshop on Hardware and Architectural Support for Security

and Privacy, HASP@ISCA 2019. pp. 4:1–4:8 (2019)

[18] D’Ursi, A.C., Cavallaro, L., Monga, M.: On bytecode slicing and aspectj interfer-

ences. In: Harrison, W. (ed.) Proceedings of the 6th Workshop on Foundations

of Aspect-Oriented Languages, FOAL 2007. ACM International Conference Pro-

ceeding Series, vol. 268, pp. 35–43. ACM (2007), https://doi.org/10.1145/1233833.

1233839

[19] Ellul, J., Pace, G.J.: Alkylvm: A virtual machine for smart contract blockchain

connected internet of things. In: 2018 9th IFIP International Conference on New

Technologies, Mobility and Security (NTMS). pp. 1–4. IEEE (2018)

[20] Ettinger, R., Verbaere, M.: Untangling: a slice extraction refactoring. In: Proc. of

the 3rd Intl. Conf. on Aspect-Oriented Software Development (AOSD) (2004)

[21] Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and

its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987),
https://doi.org/10.1145/24039.24041

[22] Fulgham, B., Gouy, I.: The computer language benchmarks game. https://

benchmarksgame-team.pages.debian.net/benchmarksgame/

[23] Gallagher, K.B., Lyle, J.R.: Using program slicing in software maintenance. IEEE

Trans. Software Eng. 17(8), 751–761 (1991), https://doi.org/10.1109/32.83912
[24] Goltzsche, D., Nieke, M., Knauth, T., Kapitza, R.: AccTEE: A WebAssembly-based

two-way sandbox for trusted resource accounting. In: Proceedings of the 20th

International Middleware Conference, Middleware 2019. pp. 123–135 (2019)

[25] Haas, A., Rossberg, A., Schuff, D.L., Titzer, B.L., Holman, M., Gohman, D., Wagner,

L., Zakai, A., Bastien, J.F.: Bringing the web up to speed with WebAssembly. In:

Proceedings of the 38th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI 2017. pp. 185–200 (2017)

[26] Hajnal, Á., Forgács, I.: A demand-driven approach to slicing legacy COBOL

systems. Journal of Software: Evolution and Process 24(1) (2011)
[27] Hall, A., Ramachandran, U.: An execution model for serverless functions at the

edge. In: Proceedings of the International Conference on Internet of Things

Design and Implementation, IoTDI 2019. pp. 225–236 (2019)

[28] Harman, M., Danicic, S.: Using program slicing to simplify testing. Softw. Test.

Verification Reliab. 5(3), 143–162 (1995)

https://doi.org/10.1145/178243.178456
https://doi.org/10.1145/2635868.2635893
https://doi.org/10.1145/2635868.2635893
https://doi.org/10.1109/SCAM.2017.11
https://doi.org/10.1007/s10664-018-9675-9
https://doi.org/10.1109/SCAM.2015.7335396
https://doi.org/10.1109/SCAM.2015.7335396
https://doi.org/10.1109/ICSM.2003.1235405
https://doi.org/10.1016/S0065-2458(03)62003-6
https://doi.org/10.1145/3397537.3397567
https://doi.org/10.1145/3397537.3397567
https://doi.org/10.1109/ICSM.1997.624245
https://doi.org/10.1145/1233833.1233839
https://doi.org/10.1145/1233833.1233839
https://doi.org/10.1145/24039.24041
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://doi.org/10.1109/32.83912

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Quentin Stiévenart, David W. Binkley, and Coen De Roover

[29] Hierons, R.M., Harman, M., Fox, C., Ouarbya, L., Daoudi, M.: Conditioned slicing

supports partition testing. Software Testing, Verification and Reliability 12 (2002)
[30] Hilbig, A., Lehmann, D., Pradel, M.: An empirical study of real-world Web-

Assembly binaries: Security, languages, use cases. In: Leskovec, J., Grobelnik,

M., Najork, M., Tang, J., Zia, L. (eds.) WWW ’21: The Web Conference 2021. pp.

2696–2708. ACM / IW3C2 (2021), https://doi.org/10.1145/3442381.3450138

[31] Hosnieh, E., Haga, H.: A novel approach to program comprehension process

using slicing techniques. J. Comput. 11(5), 353–364 (2016)
[32] Kamkar, M., Shahmehri, N., Fritzson, P.: Bug localization by algorithmic de-

bugging and program slicing. In: 2nd International Workshop Programming

Language Implementation and Logic Programming, PLILP’90. vol. 456, pp. 60–74

(1990)

[33] Kennedy, K.: Use-definition chains with applications. Comput. Lang. 3(3), 163–179
(1978), https://doi.org/10.1016/0096-0551(78)90009-7

[34] Kiss, Á., Jász, J., Gyimóthy, T.: Using dynamic information in the interprocedural

static slicing of binary executables. Softw. Qual. J. 13(3), 227–245 (2005), https:
//doi.org/10.1007/s11219-005-1751-x

[35] Kiss, Á., Jász, J., Lehotai, G., Gyimóthy, T.: Interprocedural static slicing of binary

executables. In: 3rd IEEE International Workshop on Source Code Analysis and

Manipulation (SCAM 2003). p. 118. IEEE Computer Society (2003), https://doi.

org/10.1109/SCAM.2003.1238038

[36] Korel, B., Rilling, J.: Dynamic program slicing in understanding of program

execution. In: Proc. of the 5
𝑡ℎ

Intl. Workshop on ProgramComprehension (IWPC)

(1997)

[37] Kusumoto, S., Nishimatsu, A., Nishie, K., Inoue, K.: Experimental evaluation of

program slicing for fault localization. Empirical Software Engineering 7 (2002)

[38] Lehmann, D., Kinder, J., Pradel, M.: Everything old is new again: Binary security

of WebAssembly. In: 29th USENIX Security Symposium, USENIX Security 2020

(2020)

[39] Lehmann, D., Pradel, M.: Wasabi: A framework for dynamically analyzing Web-

Assembly. In: Proceedings of the Twenty-Fourth International Conference on

Architectural Support for Programming Languages and Operating Systems, ASP-

LOS 2019. pp. 1045–1058 (2019)

[40] Mälardalen WCET research group: Mälardalen WCET research group’s bench-

marks. https://www.mrtc.mdh.se/projects/wcet/benchmarks.html

[41] Mangean, A., Béchennec, J., Briday, M., Faucou, S.: BEST: a binary executable

slicing tool. In: Schoeberl, M. (ed.) 16th International Workshop on Worst-Case

Execution Time Analysis, WCET 2016. OASICS, vol. 55, pp. 7:1–7:10. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik (2016), https://doi.org/10.4230/OASIcs.

WCET.2016.7

[42] Ménétrey, J., Pasin, M., Felber, P., Schiavoni, V.: Twine: An embedded trusted

runtime for WebAssembly. In: 37th IEEE International Conference on Data Engi-

neering, ICDE 2021. pp. 205–216. IEEE (2021), https://doi.org/10.1109/ICDE51399.

2021.00025

[43] Ottenstein, K.J., Ottenstein, L.M.: The program dependence graph in a software

development environment. In: ACM SIGSOFT/SIGPLAN Software Engineering

Symposium on Practical Software Development Environments. pp. 177–184 (1984)

[44] Perényi, Á., Midtgaard, J.: Stack-driven program generation of WebAssembly.

In: d. S. Oliveira, B.C. (ed.) Programming Languages and Systems - 18th Asian

Symposium, APLAS 2020. Lecture Notes in Computer Science, vol. 12470, pp.

209–230. Springer (2020), https://doi.org/10.1007/978-3-030-64437-6_11

[45] Philips, L., De Koster, J., De Meuter, W., De Roover, C.: Search-based tier assign-

ment for optimising offline availability in multi-tier web applications. The Art,

Science, and Engineering of Programming 2(2) (2018)
[46] Philips, L., De Roover, C., Van Cutsem, T., De Meuter, W.: Towards tierless web

development without tierless languages. In: ACM International Symposium on

New Ideas, New Paradigms, and Reflections on Programming and Software

(SPLASH/OnWard!14) (2014)

[47] Pinckney, D., Guha, A., Brun, Y.: Wasm/k: delimited continuations for Web-

Assembly. In: Flat, M. (ed.) DLS 2020: Proceedings of the 16th ACM SIGPLAN

International Symposium on Dynamic Languages. pp. 16–28. ACM (2020),

https://doi.org/10.1145/3426422.3426978

[48] Romano, A., Wang, W.: WasmView: visual testing for WebAssembly applications.

In: Rothermel, G., Bae, D. (eds.) ICSE ’20: 42nd International Conference on

Software Engineering, Companion Volume. pp. 13–16. ACM (2020), https://doi.

org/10.1145/3377812.3382155

[49] Rossberg, A.: WebAssembly Core Specification. Tech. rep., W3C (2019), https:

//www.w3.org/TR/wasm-core-1/

[50] Salimi, S., Ebrahimzadeh, M., Kharrazi, M.: Improving real-world vulnerability

characterization with vulnerable slices. In: 16th ACM International Conference

on Predictive Models and Data Analytics in Software Engineering (PROMISE).

pp. 11–20 (2020)

[51] Silva, J.: A vocabulary of program slicing-based techniques. ACM Comput. Surv.

44(3) (Jun 2012)

[52] Singh, R.G., Scholliers, C.: WARDuino: a dynamic WebAssembly virtual machine

for programming microcontrollers. In: Proceedings of the 16th ACM SIGPLAN

International Conference on Managed Programming Languages and Runtimes,

MPLR 2019. pp. 27–36 (2019)

[53] Stiévenart, Q., Binkley, D.W., De Roover, C.: QSES: quasi-static executable slices.

In: 21st IEEE International Working Conference on Source Code Analysis and

Manipulation, SCAM 2021. pp. 209–213. IEEE (2021), https://doi.org/10.1109/

SCAM52516.2021.00033

[54] Stiévenart, Q., De Roover, C.: Compositional information flow analysis for

WebAssembly programs. In: 20th IEEE International Working Conference on

Source Code Analysis and Manipulation, SCAM 2020. pp. 13–24. IEEE (2020),

https://doi.org/10.1109/SCAM51674.2020.00007

[55] Stiévenart, Q., De Roover, C.: Wassail: a WebAssembly static analysis library. In:

Fifth International Workshop on Programming Technology for the Future Web

(2021)

[56] Stiévenart, Q., De Roover, C., Ghafari, M.: The security risk of lacking compiler

protection in WebAssembly. In: 21st IEEE International Conference on Software

Quality, Reliability, and Security. IEEE (2021)

[57] Stiévenart, Q., De Roover, C., Ghafari, M.: Security risks of porting c programs to

WebAssembly. In: The 37th ACM/SIGAPP Symposium On Applied Computing.

ACM (2022)

[58] Teitelbaum, T.: Codesurfer. ACM SIGSOFT Softw. Eng. Notes 25(1), 99 (2000)
[59] Tonella, P.: Using a concept lattice of decomposition slices for program under-

standing and impact analysis. IEEE Transactions on Software Engineering 29(6)
(2003)

[60] Umemori, F., Konda, K., Yokomori, R., Inoue, K.: Design and implementation

of bytecode-based Java slicing system. In: 3rd IEEE International Workshop

on Source Code Analysis and Manipulation (SCAM 2003). pp. 108–117. IEEE

Computer Society (2003), https://doi.org/10.1109/SCAM.2003.1238037

[61] Ward, M.P.: Slicing the SCAM mug: A case study in semantic slicing. In: 3rd

IEEE International Workshop on Source Code Analysis and Manipulation (SCAM

2003). pp. 88–97. IEEE Computer Society (2003), https://doi.org/10.1109/SCAM.

2003.1238035

[62] Ward, M.P., Zedan, H.: Combining dynamic and static slicing for analysing

assembler. Sci. Comput. Program. 75(3), 134–175 (2010)
[63] Wasmer: The leading WebAssembly runtime supporting wasi and emscripten.

https://github.com/wasmerio/wasmer

[64] Watt, C., Maksimovic, P., Krishnaswami, N.R., Gardner, P.: A program logic

for first-order encapsulated WebAssembly. In: 33rd European Conference on

Object-Oriented Programming, ECOOP 2019. pp. 9:1–9:30 (2019)

[65] WebAssembly. https://webassembly.org/

[66] Weiser, M.: Program slicing. In: 5th International Conference on Software Engi-

neering. pp. 439–449 (1981)

[67] Weiser, M.: Program slicing. In: Jeffrey, S., Stucki, L.G. (eds.) Proceedings of the 5th

International Conference on Software Engineering. pp. 439–449. IEEE Computer

Society (1981), http://dl.acm.org/citation.cfm?id=802557

[68] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B.: Experimentation in

Software Engineering. Springer (2012), https://doi.org/10.1007/978-3-642-29044-

2

[69] Zhao, J.: Dependence analysis of Java bytecode. In: 24th International Computer

Software and Applications Conference (COMPSAC 2000). pp. 486–491. IEEE

Computer Society (2000), https://doi.org/10.1109/CMPSAC.2000.884771

https://doi.org/10.1145/3442381.3450138
https://doi.org/10.1016/0096-0551(78)90009-7
https://doi.org/10.1007/s11219-005-1751-x
https://doi.org/10.1007/s11219-005-1751-x
https://doi.org/10.1109/SCAM.2003.1238038
https://doi.org/10.1109/SCAM.2003.1238038
https://www.mrtc.mdh.se/projects/wcet/benchmarks.html
https://doi.org/10.4230/OASIcs.WCET.2016.7
https://doi.org/10.4230/OASIcs.WCET.2016.7
https://doi.org/10.1109/ICDE51399.2021.00025
https://doi.org/10.1109/ICDE51399.2021.00025
https://doi.org/10.1007/978-3-030-64437-6_11
https://doi.org/10.1145/3426422.3426978
https://doi.org/10.1145/3377812.3382155
https://doi.org/10.1145/3377812.3382155
https://www.w3.org/TR/wasm-core-1/
https://www.w3.org/TR/wasm-core-1/
https://doi.org/10.1109/SCAM52516.2021.00033
https://doi.org/10.1109/SCAM52516.2021.00033
https://doi.org/10.1109/SCAM51674.2020.00007
https://doi.org/10.1109/SCAM.2003.1238037
https://doi.org/10.1109/SCAM.2003.1238035
https://doi.org/10.1109/SCAM.2003.1238035
https://github.com/wasmerio/wasmer
https://webassembly.org/
http://dl.acm.org/citation.cfm?id=802557
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1109/CMPSAC.2000.884771

	Abstract
	1 Introduction
	2 Background: A Brief Tour of WebAssembly
	2.1 The MiniWasm Language
	2.2 The SCAM Mug in MiniWasm
	2.3 WebAssembly Validation Requirement

	3 The WebAssembly Slicing Algorithm
	3.1 Data-Gathering Phase
	3.2 Slicing Phase
	3.3 Reconstruction Phase

	4 Evaluation
	4.1 Implementation
	4.2 RQ1: Behavior on Classical Examples
	4.3 RQ2: Closure Slice Size
	4.4 RQ3: Executable Slice Size
	4.5 RQ4: Time to Produce Executable Slices
	4.6 RQ5: Comparison to Slicing C Programs
	4.7 Discussion
	4.8 Threats to Validity

	5 Related Work
	6 Conclusion
	References

